Hinweis
Zum Ende springen, um den vollständigen Beispielcode herunterzuladen.
Skalierungsunabhängige Winkeldarstellung#
Dieses Beispiel zeigt, wie eine skalierungsunabhängige Winkeldarstellung erstellt wird. Es ist oft nützlich, Winkel zwischen Linien oder innerhalb von Formen mit einem Kreisbogen zu markieren. Während Matplotlib einen Arc bereitstellt, ist ein inhärentes Problem bei dessen direkter Verwendung, dass ein Kreisbogen im Datenraum nicht zwangsläufig im Anzeigeraum kreisförmig ist. Auch wird der Radius des Bogens oft am besten in einem Koordinatensystem definiert, das unabhängig von den tatsächlichen Datenkoordinaten ist – zumindest, wenn Sie frei in Ihrem Plot zoomen möchten, ohne dass die Markierung unendlich groß wird.
Dies erfordert eine Lösung, bei der das Zentrum des Bogens im Datenraum definiert wird, aber sein Radius in einer physikalischen Einheit wie Punkten oder Pixeln oder als Verhältnis der Achsendimension. Die folgende AngleAnnotation Klasse bietet eine solche Lösung.
Das folgende Beispiel dient zwei Zwecken:
Es bietet eine fertige Lösung für das Problem, Winkel in Graphen einfach zu zeichnen.
Es zeigt, wie eine Matplotlib-Künstlerklasse (Artist) unterklassifiziert wird, um deren Funktionalität zu erweitern, und gibt ein praktisches Beispiel für die Verwendung des Transformationssystems von Matplotlib.
Wenn Sie sich hauptsächlich für ersteres interessieren, können Sie die unten stehende Klasse kopieren und zum Abschnitt Verwendung springen.
AngleAnnotation Klasse#
Die wesentliche Idee hier ist, Arc zu unterklassifizieren und seine Transformation auf die IdentityTransform zu setzen, wodurch die Parameter des Bogens im Pixelraum definiert werden. Wir überschreiben dann die Arc-Attribute _center, theta1, theta2, width und height und machen sie zu Eigenschaften, die mit internen Methoden gekoppelt sind, welche die jeweiligen Parameter bei jedem Zugriff auf das Attribut berechnen und dadurch sicherstellen, dass der Bogen im Pixelraum mit den Eingabepunkten und der Größe synchronisiert bleibt. Zum Beispiel erhält die Zeichenmethode des Bogens jedes Mal, wenn sie ihr _center-Attribut abfragt, anstatt immer die gleiche Zahl zu erhalten, das Ergebnis der in der Unterklasse definierten Methode get_center_in_pixels. Diese Methode wandelt das Zentrum in Datenkoordinaten über die Achsentransformation ax.transData in Pixel um. Größe und Winkel werden ähnlich berechnet, sodass sich die Form des Bogens automatisch ändert, wenn z. B. beim Zoomen oder Verschieben interaktiv.
Die Funktionalität dieser Klasse ermöglicht es, den Bogen mit einem Text zu annotieren. Dieser Text ist eine Annotation, die in einem Attribut text gespeichert ist. Da die Position und der Radius des Bogens nur zur Zeichenzeit definiert sind, müssen wir die Position des Textes entsprechend aktualisieren. Dies geschieht durch Überschreiben der Arc-Methode draw(), damit sie eine aktualisierende Methode für den Text aufruft.
Der Bogen und der Text werden beim Instanziieren den bereitgestellten Achsen hinzugefügt; es ist daher nicht unbedingt notwendig, eine Referenz darauf zu behalten.
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Arc
from matplotlib.transforms import Bbox, IdentityTransform, TransformedBbox
class AngleAnnotation(Arc):
"""
Draws an arc between two vectors which appears circular in display space.
"""
def __init__(self, xy, p1, p2, size=75, unit="points", ax=None,
text="", textposition="inside", text_kw=None, **kwargs):
"""
Parameters
----------
xy, p1, p2 : tuple or array of two floats
Center position and two points. Angle annotation is drawn between
the two vectors connecting *p1* and *p2* with *xy*, respectively.
Units are data coordinates.
size : float
Diameter of the angle annotation in units specified by *unit*.
unit : str
One of the following strings to specify the unit of *size*:
* "pixels": pixels
* "points": points, use points instead of pixels to not have a
dependence on the DPI
* "axes width", "axes height": relative units of Axes width, height
* "axes min", "axes max": minimum or maximum of relative Axes
width, height
ax : `matplotlib.axes.Axes`
The Axes to add the angle annotation to.
text : str
The text to mark the angle with.
textposition : {"inside", "outside", "edge"}
Whether to show the text in- or outside the arc. "edge" can be used
for custom positions anchored at the arc's edge.
text_kw : dict
Dictionary of arguments passed to the Annotation.
**kwargs
Further parameters are passed to `matplotlib.patches.Arc`. Use this
to specify, color, linewidth etc. of the arc.
"""
self.ax = ax or plt.gca()
self._xydata = xy # in data coordinates
self.vec1 = p1
self.vec2 = p2
self.size = size
self.unit = unit
self.textposition = textposition
super().__init__(self._xydata, size, size, angle=0.0,
theta1=self.theta1, theta2=self.theta2, **kwargs)
self.set_transform(IdentityTransform())
self.ax.add_patch(self)
self.kw = dict(ha="center", va="center",
xycoords=IdentityTransform(),
xytext=(0, 0), textcoords="offset points",
annotation_clip=True)
self.kw.update(text_kw or {})
self.text = ax.annotate(text, xy=self._center, **self.kw)
def get_size(self):
factor = 1.
if self.unit == "points":
factor = self.ax.figure.dpi / 72.
elif self.unit[:4] == "axes":
b = TransformedBbox(Bbox.unit(), self.ax.transAxes)
dic = {"max": max(b.width, b.height),
"min": min(b.width, b.height),
"width": b.width, "height": b.height}
factor = dic[self.unit[5:]]
return self.size * factor
def set_size(self, size):
self.size = size
def get_center_in_pixels(self):
"""return center in pixels"""
return self.ax.transData.transform(self._xydata)
def set_center(self, xy):
"""set center in data coordinates"""
self._xydata = xy
def get_theta(self, vec):
vec_in_pixels = self.ax.transData.transform(vec) - self._center
return np.rad2deg(np.arctan2(vec_in_pixels[1], vec_in_pixels[0]))
def get_theta1(self):
return self.get_theta(self.vec1)
def get_theta2(self):
return self.get_theta(self.vec2)
def set_theta(self, angle):
pass
# Redefine attributes of the Arc to always give values in pixel space
_center = property(get_center_in_pixels, set_center)
theta1 = property(get_theta1, set_theta)
theta2 = property(get_theta2, set_theta)
width = property(get_size, set_size)
height = property(get_size, set_size)
# The following two methods are needed to update the text position.
def draw(self, renderer):
self.update_text()
super().draw(renderer)
def update_text(self):
c = self._center
s = self.get_size()
angle_span = (self.theta2 - self.theta1) % 360
angle = np.deg2rad(self.theta1 + angle_span / 2)
r = s / 2
if self.textposition == "inside":
r = s / np.interp(angle_span, [60, 90, 135, 180],
[3.3, 3.5, 3.8, 4])
self.text.xy = c + r * np.array([np.cos(angle), np.sin(angle)])
if self.textposition == "outside":
def R90(a, r, w, h):
if a < np.arctan(h/2/(r+w/2)):
return np.sqrt((r+w/2)**2 + (np.tan(a)*(r+w/2))**2)
else:
c = np.sqrt((w/2)**2+(h/2)**2)
T = np.arcsin(c * np.cos(np.pi/2 - a + np.arcsin(h/2/c))/r)
xy = r * np.array([np.cos(a + T), np.sin(a + T)])
xy += np.array([w/2, h/2])
return np.sqrt(np.sum(xy**2))
def R(a, r, w, h):
aa = (a % (np.pi/4))*((a % (np.pi/2)) <= np.pi/4) + \
(np.pi/4 - (a % (np.pi/4)))*((a % (np.pi/2)) >= np.pi/4)
return R90(aa, r, *[w, h][::int(np.sign(np.cos(2*a)))])
bbox = self.text.get_window_extent()
X = R(angle, r, bbox.width, bbox.height)
trans = self.ax.figure.dpi_scale_trans.inverted()
offs = trans.transform(((X-s/2), 0))[0] * 72
self.text.set_position([offs*np.cos(angle), offs*np.sin(angle)])
Verwendung#
Erforderliche Argumente für AngleAnnotation sind das Zentrum des Bogens, xy, und zwei Punkte, so dass der Bogen zwischen den beiden Vektoren liegt, die p1 und p2 mit xy verbinden. Diese werden in Datenkoordinaten angegeben. Weitere Argumente sind die Größe des Bogens und seine Einheit. Zusätzlich kann ein Text angegeben werden, der entweder innerhalb oder außerhalb des Bogens gezeichnet wird, je nach Wert von textposition. Die Verwendung dieser Argumente wird unten gezeigt.
fig, ax = plt.subplots()
fig.canvas.draw() # Need to draw the figure to define renderer
ax.set_title("AngleLabel example")
# Plot two crossing lines and label each angle between them with the above
# ``AngleAnnotation`` tool.
center = (4.5, 650)
p1 = [(2.5, 710), (6.0, 605)]
p2 = [(3.0, 275), (5.5, 900)]
line1, = ax.plot(*zip(*p1))
line2, = ax.plot(*zip(*p2))
point, = ax.plot(*center, marker="o")
am1 = AngleAnnotation(center, p1[1], p2[1], ax=ax, size=75, text=r"$\alpha$")
am2 = AngleAnnotation(center, p2[1], p1[0], ax=ax, size=35, text=r"$\beta$")
am3 = AngleAnnotation(center, p1[0], p2[0], ax=ax, size=75, text=r"$\gamma$")
am4 = AngleAnnotation(center, p2[0], p1[1], ax=ax, size=35, text=r"$\theta$")
# Showcase some styling options for the angle arc, as well as the text.
p = [(6.0, 400), (5.3, 410), (5.6, 300)]
ax.plot(*zip(*p))
am5 = AngleAnnotation(p[1], p[0], p[2], ax=ax, size=40, text=r"$\Phi$",
linestyle="--", color="gray", textposition="outside",
text_kw=dict(fontsize=16, color="gray"))

AngleLabel Optionen#
Die Schlüsselwortargumente textposition und unit können verwendet werden, um die Position des Textlabels zu ändern, wie unten gezeigt
# Helper function to draw angle easily.
def plot_angle(ax, pos, angle, length=0.95, acol="C0", **kwargs):
vec2 = np.array([np.cos(np.deg2rad(angle)), np.sin(np.deg2rad(angle))])
xy = np.c_[[length, 0], [0, 0], vec2*length].T + np.array(pos)
ax.plot(*xy.T, color=acol)
return AngleAnnotation(pos, xy[0], xy[2], ax=ax, **kwargs)
fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)
fig.suptitle("AngleLabel keyword arguments")
fig.canvas.draw() # Need to draw the figure to define renderer
# Showcase different text positions.
ax1.margins(y=0.4)
ax1.set_title("textposition")
kw = dict(size=75, unit="points", text=r"$60°$")
am6 = plot_angle(ax1, (2.0, 0), 60, textposition="inside", **kw)
am7 = plot_angle(ax1, (3.5, 0), 60, textposition="outside", **kw)
am8 = plot_angle(ax1, (5.0, 0), 60, textposition="edge",
text_kw=dict(bbox=dict(boxstyle="round", fc="w")), **kw)
am9 = plot_angle(ax1, (6.5, 0), 60, textposition="edge",
text_kw=dict(xytext=(30, 20), arrowprops=dict(arrowstyle="->",
connectionstyle="arc3,rad=-0.2")), **kw)
for x, text in zip([2.0, 3.5, 5.0, 6.5], ['"inside"', '"outside"', '"edge"',
'"edge", custom arrow']):
ax1.annotate(text, xy=(x, 0), xycoords=ax1.get_xaxis_transform(),
bbox=dict(boxstyle="round", fc="w"), ha="left", fontsize=8,
annotation_clip=True)
# Showcase different size units. The effect of this can best be observed
# by interactively changing the figure size
ax2.margins(y=0.4)
ax2.set_title("unit")
kw = dict(text=r"$60°$", textposition="outside")
am10 = plot_angle(ax2, (2.0, 0), 60, size=50, unit="pixels", **kw)
am11 = plot_angle(ax2, (3.5, 0), 60, size=50, unit="points", **kw)
am12 = plot_angle(ax2, (5.0, 0), 60, size=0.25, unit="axes min", **kw)
am13 = plot_angle(ax2, (6.5, 0), 60, size=0.25, unit="axes max", **kw)
for x, text in zip([2.0, 3.5, 5.0, 6.5], ['"pixels"', '"points"',
'"axes min"', '"axes max"']):
ax2.annotate(text, xy=(x, 0), xycoords=ax2.get_xaxis_transform(),
bbox=dict(boxstyle="round", fc="w"), ha="left", fontsize=8,
annotation_clip=True)
plt.show()

Referenzen
Die Verwendung der folgenden Funktionen, Methoden, Klassen und Module wird in diesem Beispiel gezeigt
Gesamtlaufzeit des Skripts: (0 Minuten 2,045 Sekunden)